https://doi.org/10.1681/asn.2019060601
Видання: Journal of the American Society of Nephrology, 2020, №4, с.731-746
Видавець: Ovid Technologies (Wolters Kluwer Health)
Автори:
- Ji-Jing Yan
- Jung-Hwa Ryu
- Honglin Piao
- Ju Hee Hwang
- Dongkyu Han
- Sun-Kyung Lee
- Joon Young Jang
- Joongyub Lee
- Tai Yeon Koo
- Jaeseok Yang
Джерело фінансування: Ministry of Science
Анотація
<jats:sec> Significance Statement Myeloid-derived suppressor cells are innate suppressors that play an immunoregulatory role in autoimmunity, transplantation, and antitumor immunity; however, their effects on renal ischemia-reperfusion injury remain unclear. The authors showed that granulocyte colony-stimulating factor (G-CSF) increased renal infiltration of myeloid-derived suppressor cells after ischemia-reperfusion injury. When given before ischemia-reperfusion, G-CSF subsequently attenuated acute tissue injury, renal apoptosis, and renal inflammation; when given after ischemia-reperfusion, G-CSF facilitated renal recovery and attenuated renal fibrosis. They also showed that granulocytic myeloid-derived suppressor cells played a role in the beneficial effects induced by G-CSF <jats:italic toggle="yes">via arginase-1 and reactive oxygen species. These findings elucidate protective roles of G-CSF–induced myeloid-derived suppressor cells against ischemia-reperfusion injury and indicate that human studies investigating the therapeutic potential of myeloid-derived suppressor cells and G-CSF in renal ischemia-reperfusion injury are warranted. </jats:sec> <jats:sec> Background Granulocyte colony-stimulating factor (G-CSF) can increase populations of myeloid-derived suppressor cells, innate immune suppressors that play an immunoregulatory role in antitumor immunity. However, the roles of myeloid-derived suppressor cells and G-CSF in renal ischemia-reperfusion injury remain unclear. </jats:sec> <jats:sec> Methods We used mouse models of ischemia-reperfusion injury to investigate whether G-CSF can attenuate renal injury by increasing infiltration of myeloid-derived suppressor cells into kidney tissue. </jats:sec> <jats:sec> Results G-CSF treatment before ischemia-reperfusion injury subsequently attenuated acute renal dysfunction, tissue injury, and tubular apoptosis. Additionally, G-CSF treatment suppressed renal infiltration of macrophages and T cells as well as renal levels of IL-6, MCP-1, IL-12, TNF-<jats:italic toggle="yes">α, and IFN-<jats:italic toggle="yes">γ, but it increased levels of IL-10, arginase-1, and reactive oxygen species. Moreover, administering G-CSF after ischemia-reperfusion injury improved the recovery of renal function and attenuated renal fibrosis on day 28. G-CSF treatment increased renal infiltration of myeloid-derived suppressor cells (F4/80−CD11b+Gr-1int), especially the granulocytic myeloid-derived suppressor cell population (CD11b+Ly6GintLy6Clow); splenic F4/80−CD11b+Gr-1+ cells sorted from G-CSF–treated mice displayed higher levels of arginase-1, IL-10, and reactive oxygen species relative to those from control mice. Furthermore, these splenic cells effectively suppressed <jats:italic toggle="yes">in vitro T cell activation mainly through arginase-1 and reactive oxygen species, and their adoptive transfer attenuated renal injury. Combined treatment with anti–Gr-1 and G-CSF showed better renoprotective effects than G-CSF alone, whereas preferential depletion of myeloid-derived suppressor cells by pep-G3 or gemcitabine abrogated the beneficial effects of G-CSF against renal injury. </jats:sec> <jats:sec> Conclusions G-CSF induced renal myeloid-derived suppressor cells, thereby attenuating acute renal injury and chronic renal fibrosis after ischemia-reperfusion injury. These results suggest therapeutic potential of myeloid-derived suppressor cells and G-CSF in renal ischemia-reperfusion injury. </jats:sec>
Список літератури
- Jang, Immune cells in experimental acute kidney injury, Nat Rev Nephrol, № 11, с. 88
https://doi.org/10.1038/nrneph.2014.180 - Kinsey, Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury, J Am Soc Nephrol, № 20, с. 1744
https://doi.org/10.1681/ASN.2008111160 - Gandolfo, Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury, Kidney Int, № 76, с. 717
https://doi.org/10.1038/ki.2009.259 - Kim, IL-2/anti-IL-2 complex attenuates renal ischemia-reperfusion injury through expansion of regulatory T cells, J Am Soc Nephrol, № 24, с. 1529
https://doi.org/10.1681/ASN.2012080784 - Gabrilovich, Myeloid-derived suppressor cells as regulators of the immune system, Nat Rev Immunol, № 9, с. 162
https://doi.org/10.1038/nri2506 - Tavakkoli, A novel paradigm between leukocytosis, G-CSF secretion, neutrophil-to-lymphocyte ratio, myeloid-derived suppressor cells, and prognosis in non-small cell lung cancer, Front Oncol, № 9, с. 295
https://doi.org/10.3389/fonc.2019.00295 - Budhwar, The yin and yang of myeloid derived suppressor cells, Front Immunol, № 9, с. 2776
https://doi.org/10.3389/fimmu.2018.02776 - Knier, Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity, Nat Immunol, № 19, с. 1341
https://doi.org/10.1038/s41590-018-0237-5 - Scalea, Myeloid-derived suppressor cells and their potential application in transplantation, Transplantation, № 102, с. 359
https://doi.org/10.1097/TP.0000000000002022 - Lees, Myeloid derived suppressor cells in transplantation, Curr Opin Immunol, № 23, с. 692
https://doi.org/10.1016/j.coi.2011.07.004 - Li, Role of myeloid-derived suppressor cells in glucocorticoid-mediated amelioration of FSGS, J Am Soc Nephrol, № 26, с. 2183
https://doi.org/10.1681/ASN.2014050468 - Lee, Distinct macrophage phenotypes contribute to kidney injury and repair, J Am Soc Nephrol, № 22, с. 317
https://doi.org/10.1681/ASN.2009060615 - Zhang, IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury, Kidney Int, № 91, с. 375
https://doi.org/10.1016/j.kint.2016.08.020 - Pegues, C-reactive protein exacerbates renal ischemia-reperfusion injury: Are myeloid-derived suppressor cells to blame?, Am J Physiol Renal Physiol, № 311, с. F176
https://doi.org/10.1152/ajprenal.00107.2016 - Adeegbe, In vivo induction of myeloid suppressor cells and CD4(+)Foxp3(+) T regulatory cells prolongs skin allograft survival in mice, Cell Transplant, № 20, с. 941
https://doi.org/10.3727/096368910X540621 - Wang, Early myeloid-derived suppressor cells (HLA-DR-/lowCD33+CD16-) expanded by granulocyte colony-stimulating factor prevent acute graft-versus-host disease (GVHD) in humanized mouse and might contribute to lower GVHD in patients post allo-HSCT, J Hematol Oncol, № 12, с. 31
https://doi.org/10.1186/s13045-019-0710-0 - Zoso, G-CSF and exenatide might be associated with increased long-term survival of allogeneic pancreatic islet grafts, PLoS One, № 11, с. e0157245
https://doi.org/10.1371/journal.pone.0157245 - Koo, The P2X7 receptor antagonist, oxidized adenosine triphosphate, ameliorates renal ischemia-reperfusion injury by expansion of regulatory T cells, Kidney Int, № 92, с. 415
https://doi.org/10.1016/j.kint.2017.01.031 - Wang, Nucleophosmin phosphorylation as a diagnostic and therapeutic target for ischemic AKI, J Am Soc Nephrol, № 30, с. 50
https://doi.org/10.1681/ASN.2018040401 - Carr, Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection, Eur J Immunol, № 41, с. 2666
https://doi.org/10.1002/eji.201041363 - Qin, Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice, Nat Med, № 20, с. 676
https://doi.org/10.1038/nm.3560 - Vincent, 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity, Cancer Res, № 70, с. 3052
https://doi.org/10.1158/0008-5472.CAN-09-3690 - Yi, Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis, J Immunol, № 189, с. 4295
https://doi.org/10.4049/jimmunol.1200086 - Brender, Suppressor of cytokine signaling 3 regulates CD8 T-cell proliferation by inhibition of interleukins 6 and 27, Blood, № 110, с. 2528
https://doi.org/10.1182/blood-2006-08-041541 - Yan, IL-2/anti-IL-2 complexes ameliorate lupus nephritis by expansion of CD4+CD25+Foxp3+ regulatory T cells, Kidney Int, № 91, с. 603
https://doi.org/10.1016/j.kint.2016.09.022 - Wang, Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells, Free Radic Biol Med, № 48, с. 348
https://doi.org/10.1016/j.freeradbiomed.2009.11.005 - Jo, Macrophages contribute to the initiation of ischaemic acute renal failure in rats, Nephrol Dial Transplant, № 21, с. 1231
https://doi.org/10.1093/ndt/gfk047 - Ochando, Myeloid-derived suppressor cells in transplantation and cancer, Immunol Res, № 54, с. 275
https://doi.org/10.1007/s12026-012-8335-1 - Zilio, Neutrophils and granulocytic MDSC: The janus god of cancer immunotherapy, Vaccines (Basel), № 4, с. E31
https://doi.org/10.3390/vaccines4030031 - Zhou, Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells, Semin Immunol, № 35, с. 19
https://doi.org/10.1016/j.smim.2017.12.004 - Youn, Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice, J Leukoc Biol, № 91, с. 167
https://doi.org/10.1189/jlb.0311177 - Sagiv, Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer, Cell Reports, № 10, с. 562
https://doi.org/10.1016/j.celrep.2014.12.039 - Xing, Issues with anti-Gr1 antibody-mediated myeloid-derived suppressor cell depletion, Ann Rheum Dis, № 75, с. e49
https://doi.org/10.1136/annrheumdis-2016-209786 - Wang, Response to: ‘Issues with anti-Gr1 antibody-mediated myeloid-derived suppressor cell depletion’ by Xing et al, Ann Rheum Dis, № 75, с. e50
https://doi.org/10.1136/annrheumdis-2016-209848 - Ma, Anti-Gr-1 antibody depletion fails to eliminate hepatic myeloid-derived suppressor cells in tumor-bearing mice, J Leukoc Biol, № 92, с. 1199
https://doi.org/10.1189/jlb.0212059 - Hickey, Has Ly6G finally found a job?, Blood, № 120, с. 1352
https://doi.org/10.1182/blood-2012-06-435164 - Movahedi, Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity, Blood, № 111, с. 4233
https://doi.org/10.1182/blood-2007-07-099226 - Huen, GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury, J Am Soc Nephrol, № 26, с. 1334
https://doi.org/10.1681/ASN.2014060612 - Zhang, CSF-1 signaling mediates recovery from acute kidney injury, J Clin Invest, № 122, с. 4519
https://doi.org/10.1172/JCI60363 - Iwasaki, Mobilization of bone marrow cells by G-CSF rescues mice from cisplatin-induced renal failure, and M-CSF enhances the effects of G-CSF, J Am Soc Nephrol, № 16, с. 658
https://doi.org/10.1681/ASN.2004010067
Публікації, які цитують цю публікацію
Aging Affects the Role of Myeloid-Derived Suppressor Cells in Alloimmunity
Andreas Schroeter, Maximilian J. Roesel, Tomohisa Matsunaga, Yao Xiao, Hao Zhou, Stefan G. Tullius
https://doi.org/10.3389/fimmu.2022.917972 ·
2022, Frontiers in Immunology
Scopus
WoS
Цитувань Crossref:0
Extracellular vesicles for renal therapeutics: State of the art and future perspective
Tao-Tao Tang, Bin Wang, Lin-Li Lv, Zheng Dong, Bi-Cheng Liu
https://doi.org/10.1016/j.jconrel.2022.06.049 ·
2022, Journal of Controlled Release, с.32-50
Scopus
WoS
Цитувань Crossref:6
Clinical implications of Golgi protein 73 and granulocyte colony-stimulating factor and their related factors in children with bronchopneumonia
Baofa Li, Xin Liu
https://doi.org/10.1016/j.jped.2022.05.005 ·
2023, Jornal de Pediatria, №1, с.65-71
Scopus
WoS
Цитувань Crossref:0
Leonurine alleviates vancomycin nephrotoxicity via activating PPARγ and inhibiting the TLR4/NF-κB/TNF-α pathway
Xuedong Yin, Qian Gao, Chensuizi Li, Qiaoling Yang, HongliangDong, Zhiling Li
https://doi.org/10.1016/j.intimp.2024.111898 ·
2024, International Immunopharmacology, с.111898
Scopus
WoS
Цитувань Crossref:0
Empagliflozin protects against renal ischemia/reperfusion injury in mice
Qifeng Wang, Feng Ju, Jiaxue Li, Ting Liu, Yunxia Zuo, Geoffrey W. Abbott, Zhaoyang Hu
https://doi.org/10.1038/s41598-022-24103-x ·
2022, Scientific Reports, №1
Scopus
WoS
Цитувань Crossref:1
Integration of transcriptomics and metabolomics reveals pathways involved in MDSC supernatant attenuation of TGF-β1-induced myofibroblastic differentiation of mesenchymal stem cells
Yin Celeste Cheuk, Xinhao Niu, Yongxin Mao, Jiawei Li, Jiyan Wang, Shihao Xu, Yongsheng Luo, Weixi Wang, Xuanchuan Wang, Yi Zhang, Ruiming Rong
https://doi.org/10.1007/s00441-022-03681-2 ·
2022, Cell and Tissue Research, №3, с.465-489
Scopus
WoS
Цитувань Crossref:0
Coaxing Anti-Inflammatory Granulocytes to Prevent Ischemic Kidney Injury: A Fine Balance
Alan D. Salama, Mark A. Little
https://doi.org/10.1681/asn.2020020146
2020, Journal of the American Society of Nephrology, №4, с.668-670
Scopus
WoS
Цитувань Crossref:0
Multiplex Bead Array Assay of a Panel of Circulating Cytokines and Growth Factors in Patients with Albuminuric and Non-Albuminuric Diabetic Kidney Disease
Vadim V. Klimontov, Anton I. Korbut, Nikolai B. Orlov, Maksim V. Dashkin, Vladimir I. Konenkov
https://doi.org/10.3390/jcm9093006 ·
2020, Journal of Clinical Medicine, №9, с.3006
Scopus
WoS
Цитувань Crossref:13
Androgen-Influenced Polarization of Activin A-Producing Macrophages Accompanies Post-pyelonephritic Renal Scarring
Teri N. Hreha, Christina A. Collins, Allyssa L. Daugherty, Jessie M. Griffith, Keith A. Hruska, David A. Hunstad
https://doi.org/10.3389/fimmu.2020.01641 ·
2020, Frontiers in Immunology
Scopus
WoS
Цитувань Crossref:0
Targeting Myeloid-Derived Suppressor Cells for Premetastatic Niche Disruption After Tumor Resection
Fan Tang, Yan Tie, Weiqi Hong, Yuquan Wei, Chongqi Tu, Xiawei Wei
https://doi.org/10.1245/s10434-020-09371-z ·
2020, Annals of Surgical Oncology, №7, с.4030-4048
Scopus
WoS
Цитувань Crossref:19
Знайти всі цитування публікації